

Feb 19-8:47 AM

Class Quiz 4
Evaluate the following limits
1)
$$\lim_{x \to 0} [\cos x + \tan x - \sin(\frac{\pi}{2} - x)]$$

 $\frac{\chi}{2} \to 0$
 $= \cos 0 + \tan 0 - \sin(\frac{\pi}{2} - 0) = 1 + 0 - 1 = 0$
2) $\lim_{x \to -4} \frac{\chi^2 + 4\chi}{\chi^2 - 16} = \lim_{x \to 4} \frac{\chi(\chi + 4)}{(\chi + 4)(\chi + 4)}$
 $= \frac{(-4)^2 + 4(-4)}{(-4)^2 - 16} = \lim_{x \to 4} \frac{\chi}{\chi - 4} = \lim_{x \to 4} \frac{3}{\chi - 1} = \frac{1}{1 - 1} = \frac{1}{1 - 1}$
 $\lim_{x \to 5} \frac{1}{\chi - 1} = \frac{1}{1 - 1} = \frac{1}{1 - 1}$
 $\lim_{x \to 4} \frac{\chi}{\chi - 4} = \lim_{x \to 4} \frac{\chi}{\chi - 4} = \lim_{x \to 4} \frac{\chi}{\chi - 4} = \lim_{x \to 4} \frac{1}{\chi - 4} = \lim_{x \to 1} \frac{1}{\chi - 1} = \lim_{x \to 1} \frac{1}{\chi} = \lim_{x \to 1} \frac{-1}{\chi} =$

Evaluate
1)
$$\lim_{x \to 2} \frac{x^2 - 5x + 6}{x^2 - 6x + 8} = \frac{2^2 - 5(2) + 6}{2^2 - 6(2) + 8} = \frac{0}{0} \text{ I.F.}$$

 $= \lim_{x \to 2} \frac{(x - 2)(x - 3)}{(x - 2)(x - 4)} = \lim_{x \to 2} \frac{x - 3}{x - 4} = \frac{2 - 3}{2 - 4} = \frac{-1}{-2} = \frac{1}{2}$
2) $\lim_{x \to 2} \frac{\frac{1}{x + 1} - 1}{x} = \frac{1}{0 + 1} = \frac{1 - 1}{0} = \frac{0}{0} \text{ I.F.}$
 $x - 80 \quad x = \frac{1}{0} = \frac{1 - 1}{0} = \frac{0}{0} \text{ I.F.}$
Lep = $x + 1$ $\frac{(x + 1) \cdot \frac{1}{x + 1} - (x + 1) \cdot 1}{(x + 1) x} = \lim_{x \to 0} \frac{x - x - 4}{(x + 1) x}$
 $= \lim_{x \to 0} \frac{x - x}{(x + 1) x} = \lim_{x \to 0} \frac{x - x - 4}{(x + 1) x}$
 $= \lim_{x \to 0} \frac{-x}{(x + 1) x} = \lim_{x \to 0} \frac{-1}{x + 1} = \frac{-1}{0 + 1} = -1$

Г

Feb 24-9:07 AM

Evaluate
$$(x^{2})^{2} - 4^{2}$$

() $\lim_{x \to 2} \frac{x^{4} - 16}{x^{2} - 4} = \frac{(-2)^{2} - 16}{(-2)^{2} - 4} = \frac{16 - 16}{4 - 4} = 0$ I.F.
 $= \lim_{x \to -2} \frac{(x^{2} + 4)(x^{2} - 4)}{x^{2} - 4} = \lim_{x \to -2} (x^{2} + 4) = (-2)^{2} + 4 = 8$
a) $\lim_{x \to -2} \frac{x^{2} - 9}{x^{3} - 27} = \frac{3^{2} - 9}{3^{3} - 27} = 0$ I.F.
 $x \to 3$ $x^{3} - 27 = \frac{3^{2} - 9}{3^{3} - 27} = 0$ I.F.
 $= \lim_{x \to 3} \frac{(x + 3)(x - 3)}{(x - 3)(x - 3)} = \lim_{x \to 3} \frac{x + 3}{x^{2} + 3x + 9} = \frac{3 + 3}{3^{2} + 3x + 9}$
 $= \frac{6}{27} = \frac{2}{9}$

Evaluate 1) $\lim_{x \to 3} \frac{1}{x+3} - \frac{1}{4} = \frac{1}{1+3}$ $=\frac{\frac{1}{4}-\frac{1}{4}}{\frac{1}{4}}=\frac{0}{0}$ I.F. -4 x+1 x-1 0 1-1 x-11 $= \lim_{\substack{x \to 1 \\ x \to 1}} \frac{-1}{4(x+3)} = \frac{-1}{16}$ 2) $\lim_{x \to 25} \frac{\sqrt{x} - 5}{x - 25}$ Hint: Rationalize the numerator $\frac{\sqrt{25} - 5}{2.5 - 25} = \frac{5 - 5}{0} = \frac{0}{0} \text{ I.F.} \qquad P(A - B(A + B) - A^{2})$ $= \lim_{x \to 25} \frac{(\sqrt{x} - 5)(\sqrt{x} + 5)}{(x - 25)(\sqrt{x} + 5)} = \lim_{x \to 25} \frac{(\sqrt{x})^{2} - (5)^{2}}{(x - 25)(\sqrt{x} + 5)}$ -**Þ(A-B)(A+B)**=A²-B² = $\lim_{x \to 25} \frac{x - 25}{(x - 25)(\sqrt{x} + 5)}$ $=\lim_{x \to 25} \frac{1}{\sqrt{x} + 5} = \frac{1}{\sqrt{25} + 5}$ = <u>1</u> 5+5 = 10

Feb 24-9:30 AM

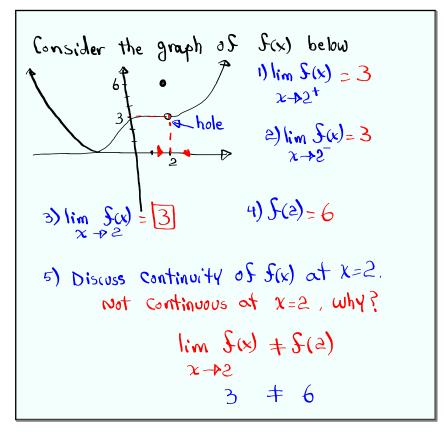
Evoluate
$$\sin \frac{f(x+h) - f(x)}{h}$$

= $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
= $\lim_{h \to 0} \frac{(x+h)^2 - f(x+h) + 5 - x^2 + 4x - 5}{h}$
h + + 0 h
= $\lim_{h \to 0} \frac{f(2x+h)^2 - 4f(x+h) + 5 - x^2 + 4x - 5}{h}$
= $\lim_{h \to 0} \frac{f(2x+h)^2 - 4f(x+h) + 5 - x^2 + 4x - 5}{h}$
= $\lim_{h \to 0} \frac{f(2x+h)^2 - 4f(x+h) + 5 - x^2 + 4x - 5}{h}$
= $\lim_{h \to 0} \frac{f(2x+h)^2 - 4f(x+h) + 5 - x^2 + 4x - 5}{h}$
= $\lim_{h \to 0} \frac{f(2x+h)^2 - 4f(x+h) + 5 - x^2 + 4x - 5}{h}$
= $\lim_{h \to 0} \frac{f(2x+h)^2 - 4f(x+h)}{h} = \lim_{h \to 0} (2x+h) - 4f(x+h) - 4f(x+h)$

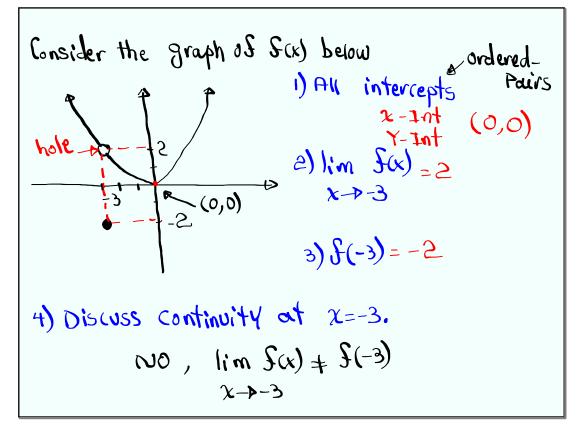
F(x) is Continuous at
$$x = \alpha$$
 when
1) f(a) exists,
2) $\lim_{x \to a} f(x)$ exists, and
 $x \to \alpha$
3) $\lim_{x \to a} f(x) = f(\alpha)$
 $x \to \alpha$
Is $f(x) = x^2 - 4x + 10$ cont. at $x = 3$?
1) $f(3) = 3^2 - 4(3) + 10 = 9 - 12 + 10 = 11$
2) $\lim_{x \to 3} f(x) = \lim_{x \to 3} [x^2 - 4x + 10] = 3^2 - 4(3) + 10 = 11$
Since $\lim_{x \to 3} f(x) = f(3)$, then $f(x)$ is cont.
 $x \to 3$ at $x = 3$.

Feb 24-10:07 AM

Is
$$S(x) = \frac{1}{x}$$
 Continuous at $x = \frac{1}{4}$?
1) $S(\frac{1}{4}) = \frac{1}{\frac{1}{4}} = 4$
2) $\lim_{x \to \frac{1}{4}} S(x) = \lim_{x \to \frac{1}{4}} \frac{1}{x} = \frac{1}{\frac{1}{4}} = 4$
Since $\lim_{x \to \frac{1}{4}} S(x) = S(\frac{1}{4})$, then $S(x)$ is cont.
 $x = \frac{1}{4}$ of $x = \frac{1}{4}$.



Feb 24-10:15 AM

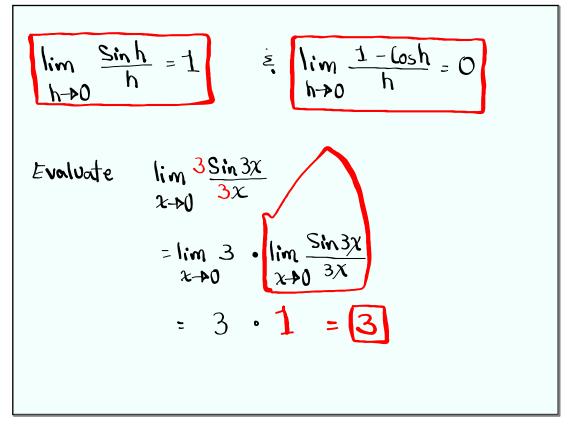


Squeeze Thrm
IS
$$g(x) \leq f(x) \leq h(x)$$
 over an interval that
Contains $x = a$ and $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L$
then $\lim_{x \to a} f(x) = L$
 $x \to a$
Suppose $(a_{5x} \leq f(x) \leq x^{2} + 1)$, find $\lim_{x \to 0} f(x)$
 $\lim_{x \to 0} (x^{2} + 1) = 0^{2} + 1 = 1$
 $x \to 0$
By Squeeze Thrm
 $\lim_{x \to 0} f(x) = 1$
 $x \to 0$

Feb 24-10:27 AM

Suppose
$$Sin(x+1) \le S(x) \le \sqrt{x} - 2$$

Find $\lim_{x \to 4} S(x) = Sin(4-4) = Sin 0 = 0$
 $x - 54$
 $\lim_{x \to 4} (\sqrt{x} - 2) = \sqrt{4} - 2 = 2 - 2 = 0$
 $x - 54$
By S.T.
 $\lim_{x \to 4} S(x) = 0$
 $x - 54$



Feb 24-10:37 AM

Evaluate

$$\lim_{\substack{x \to 0 \\ x \to 0}} \frac{\sin 3x}{\sin 5x} = \frac{\sin 3(0)}{\sin 5(0)} = \frac{\sin 0}{\sin 0} = 0$$
I.F.

$$\frac{3\sin 3x}{3x} = \frac{\sin 3x}{x \to 0} = \frac{3x}{3x}$$

$$\lim_{\substack{x \to 0 \\ 5x}} \frac{3\sin 3x}{3x} = \frac{3\lim_{\substack{x \to 0 \\ x \to 0 \\ 5x}} \frac{\sin 3x}{5x}}{5x} = \frac{3 \lim_{\substack{x \to 0 \\ x \to 0 \\ 5x}} \frac{\sin 3x}{5x}}{5x}$$

Evoluate

$$\lim_{x \to 2} \frac{\sin(x-2)}{x^2 - 4} = \frac{\sin(2-2)}{2^2 - 4} = \frac{\sin 0}{0} = \frac{0}{0}$$
I.F.

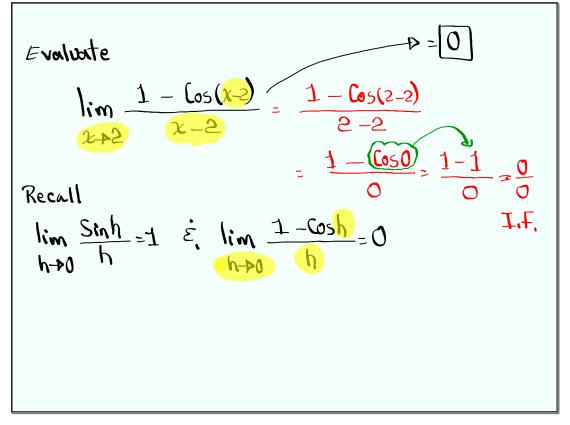
$$= \lim_{x \to 2} \frac{\sin(x-2)}{(x+2)(x-2)} = \lim_{x \to 2} \left[\frac{1}{x+2} \cdot \frac{\sin(x-2)}{x-2}\right]$$

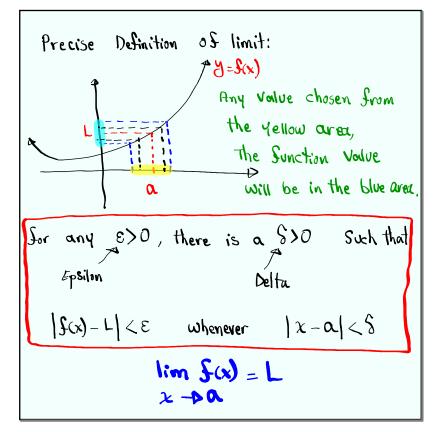
$$= \lim_{x \to 2} \frac{1}{x+2} \cdot \lim_{x \to 2} \frac{\sin(x-2)}{x-2}$$

$$= \lim_{x \to 2} \frac{1}{x+2} \cdot \lim_{x \to 2} \frac{\sin(x-2)}{x-2}$$

$$= \lim_{x \to 2} \frac{1}{x+2} \cdot \frac{1}{x+2}$$

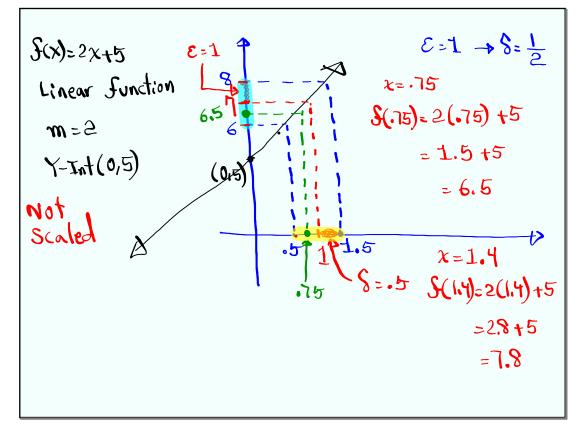
Feb 24-10:45 AM





Feb 24-10:56 AM

Prove
$$\lim_{x\to 1} (2x+5) = 1$$
.
 $x\to 1$
S(x) = 2x+5 i) Let's verify the limit.
 $a = 1$ $\lim_{x\to 1} (2x+5) = 2(1) + 5 = 2 + 5 = 7$
 $x\to 1$ $\sqrt{2}$
Sor $\varepsilon > 0$, there is a $\delta > 0$ Such that
 $| fcx \rangle - L| < \varepsilon$ whenever $|x-a| < \delta$
 $| 2x+5 -7| < \varepsilon$ whenever $|x-1| < \delta$
 $| 2x - 2| < \varepsilon$ $|x-1| < \delta$
 $| 2(x-1)| < \varepsilon$ $|x-1| < \delta$
 $| 2|x-1| < \varepsilon$ $|x-1| < \delta$
 $| x-1| < \frac{\delta}{2}$ $|x-1| < \delta$
 $| x-1| < \frac{\delta}{2}$ $\varepsilon = 1 \rightarrow \delta = \frac{1}{2}$
 $\varepsilon = \frac{1}{2} \rightarrow \delta = 1$
 $\varepsilon = \frac{1}{2} \rightarrow \delta = \frac{1}{4}$



Feb 24-11:09 AM